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ABSTRACT

The vast majority of online services nowadays, provide both
a mobile-friendly website and a mobile application to their
users. Both of these choices are usually released for free,
with their developers, usually gaining revenue by allowing
advertisements from ad networks to be embedded into their
content. In order to provide more personalized and thus
more effective advertisements, ad networks usually deploy
pervasive user tracking, raising this way significant privacy
concerns. As a consequence, the users do not have to think
only their convenience before deciding which choice to use
while accessing a service: web or app, but also which one
harms their privacy the least.

In this paper, we aim to respond to this question: which of
the two options protects the users’ privacy in the best way?
apps or browsers? To tackle this question, we study a broad
range of privacy related leaks in a comparison of several
popular apps and their web counterpart. These leaks may
contain not only personally identifying information (PII) but
also device-specific information, able to cross-application and
cross-site track the user into the network, and allow third
parties to link web with app sessions.

Finally, we propose an anti-tracking mechanism that en-
able the users to access an online service through a mobile
app without risking their privacy. Our evaluation shows that
our approach is able to preserve the privacy of the user by
reducing the leaking identifiers of apps by 27.41% on aver-
age, while it imposes a practically negligible latency of less
than 1 millisecond per request.

1. INTRODUCTION
1.1 The setting

As recently as only a decade ago, the only way to connect
and interact with online services (or online web sites) was
through web browsers. However, the proliferation of mobile
devices and developer tools gave service providers the chance
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to create their very own mobile applications (or apps) that
the users download and install in their devices. Each of the
above two access choices (i.e. apps vs. web browsers), of-
fers different kinds of advantages [57]. For example, web
browsers can be found in most/all mobile devices and pro-
vide easy access to any mobile-friendly web site. On the
other hand, native apps may offer better support for spe-
cific functionalities such as interactive gaming and offline
access.

Choosing between the app and the browser is not easy.
There is a lot of debating on the web, with several studies
trying to compare these two options across different dimen-
sions [57, 10, 17, 55, 64, 9]. Fortunately, the majority of
service providers support both options: they provide both
a mobile app and a mobile website. Although each option
may have different benefits, in this paper, we are interested
in exploring their privacy-related characteristics. That is,
which of the two options protects the users’ privacy in the
best way? apps or browsers? Or similarly, which of the two
options facilitates the most privacy leaks?

1.2 Related studies

Certainly, we are not the first ones to deal with this prob-
lem. For example, C. Leung et al. attempt a comparison
of mobile apps and vanilla browsers based on the amount
of personally identifiable information (PII) they leak [31].
The authors manually examined a small group of 50 online
services and they monitored the PII each of them shares,
over plaintext or encrypted connections. Their results show
that there is no clear single answer. Therefore, they im-
plemented an online service [32] aiming to recommend the
users the best option for accessing a small sample of online
services, based on the PII they care about the most.

In this paper, we conduct a similar comparison, but we
significantly broaden the definition of privacy. Apart from
personal data, such as gender, email address, name, user-
name, birth-date, etc., that a service may leak, there is
also device-specific information that can be used as iden-
tifiers. Such identifiers may include: (i) installed applica-
tions, (ii) known SSIDs, (iii) connected wifi, (iv) operating
system’s build information, (v) carrier, etc. These identi-
fiers although seemingly unable, at a first glance, to reveal
any possible sensitive data for the user, they are able, when
combined, to allow a monitoring entity to persistently track
mobile users without using any deletable cookies or reset-
table Advertising IDs [14, 63, 36]. This way, the monitoring
entity can uniquely identify the mobile user and monitor her



behavior, her actions or her interests in the online world: in-
formation, which is usually more useful for the web entities
(advertisers, analytics, etc.) to obtain than individual and
possibly sensitive parts of personal data.

To make matters worse, by deploying device fingerprint-
ing a third party can also: (i) decloak user’s anonymous
sessions: by linking for example Tor sessions of the same
device with non anonymous ones [3, 59] and (ii) link web
with app sessions, one of the biggest challenges of mobile
ad networks [58]. Surprisingly, our results show that in case
of device-specific privacy leaks, there is a clear winner: mo-
bile browsers leak significantly less information compared to
mobile apps. In most of the cases we studied, mobile apps
leaked tons of information that mobile browsers did not (or
could not) leak. Thus, we urge users to consider more seri-
ously the use browsers whenever they have the choice.

Unfortunately, this choice may not always be available.
For example, web sites may provide poor functionality to
mobile devices and thus, the use of apps may seem the only
reasonable choice from a user experience point of view. To
improve the privacy of users, who must use mobile apps,
we propose antiTrackDroid, an anti-tracking mechanism for
mobile apps, tantamount to the current state-of-the-art ad-
blockers of mobile browsers. Our approach constitutes an
integrated monitoring and filtering module, which contrary
to alternative approaches works solely in the users’ device,
without requiring any additional infrastructure (i.e. proxy
or VPN). Our evaluation shows that antiTrackDroid is able
to reduce the leaking identifiers of apps by 27.41% on aver-
age, when it imposes an insignificant latency of less than 1
millisecond per request.

To summarize, the contributions of this paper are:

1. We conduct a comparative study regarding the device-
related privacy leaks of mobile apps and mobile browsers
in Android. Our dataset includes a set of online ser-
vices accessible by both mobile apps and mobile-friendly
web pages. For each of them, we investigate if the as-
sociated app leaks more or less information than its
website, accessed through mobile browser.

2. We design antiTrackDroid: a novel anti-tracking mech-
anism for mobile devices. Similar to state-of-the-art
browser ad-blockers, our approach blocks any possible
request may deliver to third parties data that can be
used either for user profiling or device fingerprinting.

3. We implement our system as an integrated filtering
module for Android. antiTrackDroid uses a mobile-
based blacklist, which we publicly release, and it does
not require changes in the respective OS or any kind
of external infrastructure (i.e. proxy). We experimen-
tally evaluate our prototype and show that it is able to
reduce the leaking identifiers of apps by 27.41% on av-
erage, when it imposes an insignificant latency of less
than 1 millisecond per request.

1.3 Background

Third party tracking in web sites. Traditionally, web
sites keep track of users and sessions by using cookies. So by
storing some state (in the form of cookies) on the client side,
an advertising or analytics company can identify a user along
with her interests, preferences, or even past purchases. The
need for a more centralized infrastructure, which will work as
a data warehouse containing rich data for several individual
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Figure 1: High level overview of the data collection
process.

users and their interactions with different web sites, brought
in the surface mechanisms like web beacons [35] and cookie
synchronization [2]. These mechanisms allow third parties
to collect user data bypassing the same origin policy [60],
thus enriching their profiles of the users.

Third party tracking in mobile apps. To earn ad rev-
enue, app developers display ads from third parties in their
apps. These ads are usually delivered through RTB auc-
tions [19]. To deliver effective advertisements to the end-
user, third party ad-networks request from app developers
to embed in their apps external third party ad-libraries,
also known as in-app libraries [13]. The scope of these ad-
libraries is to allow the developer request at runtime an ad-
impression to fill the app’s available ad-slots. To facilitate
the delivery of personalized advertisement, ad-libraries in-
herit all the permissions enjoyed by the original app such
as: access to the phone, access to contacts list, access to de-
vice characteristics, etc. In this way, ad-libraries can track
users as they use services in cyberspace.

2. OUR DATASET

Our dataset contains several popular online services along
with their mobile application (app) counterpart. We started
with the 300 top online web services from Alexa and, for each
one of them, we tried to find its corresponding mobile app.
To automate the mobile apps collection process, we used
the Selenium suite [49] to instrument Chrome browser and
the APK downloader plugin [44] to download the full APKs
of the Android apps from Google Play. Figure 1 summa-
rizes our dataset collection process. Note that at the time
of experimentation (February 2016) only 116 (of the top 300
Alexa sites) provided a mobile app. Thus, our final dataset
consists of 116 apps along with their associated mobile-
friendly web counterpart, making it larger than datasets
explored in similar manually investigative studies([31]: 50
apps, [45]: 100 apps , [66]: 110 apps).

Before we analyze the privacy leaks of apps and web in our
dataset, we first explore the characteristics of our dataset.
Application Categories. As presented in Figure 1, we
used CYREN [12] to extract the category of each service in
our dataset. Figure 2 shows the breakdown of our services
into different categories. As expected, News-, Shopping- and
Social-related services dominate the dataset, but it seems
that we have services from all over the spectrum.

Third party in-app libraries. As we discussed in Sec-
tion 1.3, the majority of free apps embed a third party, in-
app library. These third party libraries are used for analytics-
and ad- related purposes, thus sending to third parties in-
formation about the user, which is important for the tar-
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Figure 5: Overview of the monitoring methodology
of apps and web related traffic.

geted advertising delivery. To identify these in-app libraries
in our dataset, we use LibRadar [34], a tool for Android
which detects embedded libraries, even if obfuscation meth-
ods were deployed. After the in-app library extraction, we
manually filtered out libraries other than analytics- and ad-
related. Figure 3 presents the analytics- and ad-related li-
braries found per app and as we see, 56.67% of apps contain
at least one such library, when there is also 1 app with 9
of such in-app libraries. Note that these results, are veri-
fied by other studies as well [38]. In Figure 4, we see the
popularity of the top third party libraries in our dataset,
with GoogleAds residing in 28% of the apps and Fabric.io
following with 16.67%.

3. MONITORING OUTGOING TRAFFIC

In Figure 5, we see an overview of our testbed. Using a
NEXUS 6 smartphone running Android 6.0.1, we run each
online service (i) from the corresponding app and (ii) from
its website by using Firefox mobile browser!. Each run lasts
for approximately 20 minutes where we perform the same
user actions in both counterparts of the service including
login, registration, search, share, etc. In order to capture
the devices’ network traffic (both HT'TP and HTTPS), we
used a dedicated monitoring component, which captures all

'We choose Firefox mobile browser for its ability to support
browser extensions

the outgoing requests of both apps and browsers. For our
monitoring component, we use a raspberry PI 2 [43] de-
vice configured as an access point and by running mitm-
proxy [11], an SSL-capable monitoring proxy, we are able to
monitor SSL sessions as well. After capturing both HTTP
and HTTPS traffic, the traces are forwarded to our Traffic
Monitoring & Trace Filtering module, in which the track-
ing related requests are identified by using a filtering list
based on a popular mobile-based blacklist [26], enhanced
with entries we collected after manual inspection. Finally,
the categorized traffic is passed to the Analysis module to
produce statistics and the privacy leak analysis results. In
this module, we filter possible leaked identifiers by perform-
ing pattern matching using a list of ID keywords we discover
after studying device’s settings. Moreover, we implemented
an app able to collect all these IDs, with a view to find and
verify the correctness of them. Then, we manually inspect
the results to eliminate possible false positives.

MufHling Background Apps. To prevent apps running
simultaneously during our experiments, we limit the back-
ground app activities while capturing the trace of each app
in our dataset. More technically, we use the available de-
veloper options of the mobile device and by using a custom
bash script that employs the adb toolkit [4], we kill the back-
ground processes of the device.

Bypassing SSL Certificate Pinning. Certificate (or SSL)
Pinning [61, 23] is a technique used by several mobile apps
to avoid MITM attacks. Through SSL pinning, a mobile
app checks the certificate received by the server during the
SSL handshake, and compares it to a known copy of the
particular certificate, that was bundled with the app. To
bypass SSL Certificate pinning and allow our monitoring
component to capture the SSL traffic unimpeded, we use
a modified version of JustTrustMe [62] module of Xposed
Framework [47]. By using this module, we hook into SSL-
related functions and nullify the code responsible for per-
forming SSL pinning checks.

4. PRIVACY LEAK ANALYSIS

In this section, we present the core analysis of our privacy-
related study. Specifically, by using the network traces we
collected with our monitoring proxy, we measure and com-
pare the quantity and the type of information leaked, as well



IDs Description PermissionGroup App Services(%) Web  Services(%)
Build The Android OS build version code NONE v 100.00 v 0.00
Model The device model or its codename NONE v 100.00 v 9.48
OS Version The OS or SDK version NONE v 100.00 v 100.00
Manufacturer The device manufacturer NONE v 78.45 v 24.14
Screen Ressolution The screen resolution of the device NONE v 75.00 v 42.24
Location Device’s GPS coordinates LOCATION v 66.38 v 85.34
Carrier The Mobile Network Operator PHONE v 64.66 - 0.00
Advertising ID User-resettable, unique, anonymous ID for adver- NONE v 62.93 - 0.00
tising, provided by Google Play services(ADID)
Android ID A random 64-bit number that is generated when NONE v 57.76 0.00
the device boot’s for the first time
CPU The device’s CPU architecture NONE v 35.34 's 20.69
IMEI International Mobile Equipment Identity PHONE v 24.14 - 0.00
Timezone User’s timezone NONE v 24.14 v 9.48
City The city name of the device’s location NONE v 22.41 v 25.86
Device SN A unique hardware serial number of the device NONE v 14.66 - 0.00
MAC Address The MAC address from the device WiFi NIC WIFI STATE v 14.66 - 0.00
AP SSID Access Point’s MAC Address or SSID WIFI STATE v 9.48 0.00
IMSI International Mobile Subscriber Identity PHONE v 9.48 - 0.00
Local IP Device’s local(LAN) IP address WIFI STATE 's 6.03 's 0.00
Fingerprint A string that uniquely identifies the device’s build | NONE v 5.17 = 0.00
Memory Info The device’s (total/free) memory information NONE v 5.17 - 0.00
Phone Number The SIM number PHONE v 5.17 - 0.00
WiFi Scan Scan for nearby routers and devices and grab their WIFI STATE and v 4.31 - 0.00
MAC Address and SSID LOCATION
Contacts The device’s contacts list CONTACTS v 3.45 - 0.00
Installed Apps The device installed apps NONE v 3.45 - 0.00
ICCID The SIM card Serial Number PHONE v 2.59 - 0.00
Kernel Version The OS kernel version NONE 's 2.59 - 0.00
Baseband The radio driver in which the info related to the NONE v 1.72 - 0.00
telephone communications of the device is stored
Bootloader The system bootloader version number NONE 's 0.86 - 0.00
GSF Google Services Framework Key ID, paired with GSERVICES v 0.86 - 0.00
the user’s account
Stored SSIDs The SSID/MAC of all connected Access Point’s WIFI STATE v 0.86 - 0.00
Logcat The log of system messages, including stack traces NONE v 0.86 - 0.00
SMS The device’s sent/received SMS SMS v 0.00 - 0.00

Table 1: Description of each ID we investigate, their required permissions (Normal permissions are marked
with blue, when Runtime/Dangerous permissions with red), their leakability by apps or browsers and the
percentage of services found retrieving the corresponding value of each ID.
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Figure 6: Use of SSL in apps and web.

as the diffusion of these leaks in both web and app versions
of our collected online services.

Apart from the personal data a service may leak (such
as birth-date, email addresses, gender, etc.), there is also
device-specific information, which, if leaked, can also be used
as identifiers. Although unable, at a first glance, to reveal
any personal data for the user, these identifiers are able to al-
low a tracking entity to follow mobile users inside a network
without using any deletable cookies or resettable Advertis-
ing IDs. Table 1 presents a short description of the leaks
and identifiers we detected.

4.1 Encrypted sessions

Both apps and web browsers need to communicate with
their associated online service in order to send and retrieve
updated information. In our first experiment, we measure
the adoption of SSL in the transactions of both apps and
websites to explore the possibility of a passive observer to
learn user info by monitoring the traffic.

First we measure the use of SSL in apps, and our re-
sults indicate that only 18.97% of the apps use ex-
clusively HTTPS, 2.58% use solely HTTP, and 78.45%

a susceptible [20] mixture of both. Consequently, it should
not come as a surprise that we found 2 apps sending user’s
credentials in plaintext over HTTP. We informed the corre-
sponding providers and we can confirm that at least one of
them has fixed it. In Figure 6, we compare the use of SSL
in web and apps. We see that apps are more likely to
use HTTPS (62% of total traffic) compared to web
browsers (47%).

4.2 Identifiers leaked

In our next experiment, we set out to explore what kinds
of identification information is leaked. Table 1 presents a list
of such identifiers including “Advertising ID”, “Android ID”,
“AP SSID”, etc. along with its required permissions. We
immediately see that apps are very aggressive at leaking such
information (see column “Services(%))”). For example, we
see that 57.76% of the apps leak the “Android ID” identifier.
Surprisingly, we observe that none of the web browsers (see
4th column) leak this information. This happens, contrary
to apps, because web browsers typically do not have access
to this information. In summary, we see that apps are
much more prone than web browsers to leak device
identification information.

Table 1 also shows that mobile apps leak a huge variety of
information including the list with the rest of the installed
apps, too. This list allows an observing entity to easily infer
important PII about the user including gender, age, pref-
erences, interests etc. There are 3.45% of the applications,
sending the whole list of the installed apps to a remote do-
main. Interestingly, in one of them, the remote server af-
ter conducting some analysis on the data, responded back
with an approximation of the user’s gender, age range, a list
of possible interests and a number of recommended brand
names.

In addition, there are also five applications which leaking
the nearby WiFi Access Points. Such data can be correlated
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Figure 7: Number of 3rd party tracking domains,
with which the device interacts when the user ac-
cesses each of the top 20 privacy-leaking services.

with online AP maps [7] and reveal the exact location of the
user and possible interpersonal relations of people being in
the same location at the same time. In addition, there is
one app leaking the entire list of known APs, which can
reveal previous locations the user has visited, even before
the installation of the app. Finally, there is one app leaking
the device’s current running processes.

4.3 Diffusion of privacy leaks

After analyzing the type of information an app and a web
browser can leak, we set out to explore the number of third
party entities that receive this kind of information. First, we
measure the number of third party trackers in apps and web
browsers. Figure 7 shows that in most cases, it is the app
that provides identifying information to more third party
trackers. Indeed, we see that apps leak information to an
average of 11.7 third party trackers while web browsers leak
information to an average of 5 trackers. Similarly, as many
as 93.9% of Android apps leak data to one or more third-
party trackers, while the corresponding percentage for web
browsers is 69.3%.

Finally, in Figure 8, we present the most popular track-
ing domains in the dataset of the collected apps. As we see,
Google’s analytics and advertising domains (google-analytics,
doubleclick) dominate, having access in 56% and 53.6% of
the apps respectively. Facebook, one of the most common
social media apps, follows with 50.4%.

4.4 Mobile browsers leak too

Up to this point, we compare app and web counterparts
of the online services. However, let us not overlook that mo-
bile websites are being accessed by web browsers, which are
mobile apps themselves. As a consequence, browser apps
may leak data to remote entities as well. To explore this,
we experimented with the 15 most popular web browsers
in Android. We fetch a simple, tracker-free website like
google.com using each one of them and we monitor their
traffic. As we see in Figure 9, the vast majority of browsers
sends a significant number of third party tracking requests
to the network. Surprisingly, we see that even the Ad-
block browser sends a request to a tracking domain
(i.e. adjust.com).

In order to further-investigate the possible privacy leaks of
web browsers, we analyze the content of the above tracking
requests. In Table 2, we present the identifiers each browser
leaks to both first and third parties. We see that there is
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Table 2: Identifiers leaked by the most popular
browser apps when visiting google.com.

a significant number of browsers leaking an abundance of
identifiers (more than 10 in some cases).

A careful reader may have observed that although some
identifiers are not leaked from a website (see Table 1), in-
terestingly, they are getting leaked through the browser app
itself (see Table 2). Hence, we see that mobile web browsers
constitute ordinary apps, thus including third-party trackers
of their own. As a consequence, when a user visits a web-
site (e.g CNN.com), the website running inside the browser’s
sandbox cannot access, for example AdvertisingID, but the
browser app (along with its included third-party trackers)
can, pairing this way the website visit with the specific Ad-
vertisingID.

4.5 Performance cost of user tracking

Trackers do not cost only in the privacy of the user, they
also consume resources of both web and apps by generat-
ing requests not relevant with the content the user chose to
browse. In Figure 10 and Figure 11, we present the num-
ber of the total and tracking requests respectively for both
web and app versions of our collected online services. We
see that apps, in general, send more requests to the network
(367 for the 50% of the apps) than web (221 for the 50% of
the websites), when the portion of tracking requests is 8.5%
and 5% respectively. Regarding bytes, we see in Figure 12
and Figure 13, that the transferred volume of bytes is sim-
ilar in both apps and web, as expected given their similar
functionality. The tracking related bytes are 192 KB in apps
and 77 KB in web per service. Apparently, this amount of
Bytes regard unnecessary tracking content, constituting a
significant monetary cost for the user’s data plan.

4.6 Summary

In the above analysis, we explore the information leaked
in each of the two versions of an online service. We see that
both web and apps leak important fingerprinting informa-
tion about the user’s device. This allows third parties to
not only cross-channel track the users by linking web with
app sessions but also correlate eponymous with anonymous
sessions. In addition, we see apps leaking information (e.g.
installed and running apps, nearby APs, etc.) that may al-
low a tracking domains to infer the user interests, gender,
even behavioral patterns. Furthermore, we studied the dif-
fusion of the above privacy leaks and we see that apps tend
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Figure 12:

to send requests to more tracking domains than their web
counterpart.

Our results prove that both versions of the online ser-
vice leak information that can be used beyond the control
of users (for targeted advertising purposes or an asset for
sale to other entities [29]). However, recalling the moti-
vating question of our paper: to identify which of the two,
web or app, facilitates the most privacy leaks, the answer is
straightforward. Apps leak significantly more device-specific
information.

5. FORTIFYING APPS FROM TRACKERS
5.1 Our approach: antiTrackDroid

Our findings so far suggest that apps leak more informa-
tion than web browsers. Thus, it is reasonable for privacy-
aware users to prefer using web browsers instead of apps to
access online services. However, this is not always possible,
or desired [57]. As a result, the use of mobile apps is, in
many cases, unavoidable. To provide these users with bet-
ter privacy guarantees, we propose antiTrackDroid: an anti-
tracking mechanism able to preserve the privacy of the users
by blocking many personal and device information leaks to
any third parties. Specifically, antiTrackDroid is a module
which filters all outgoing requests and blocks the ones deliv-
ering tracking information.

The core design principles of antiTrackDroid include the
ability to operate (i) for all apps, and (ii) without the need
for any additional infrastructure (e.g. VPN, Proxy, etc.). To
meet these principles, antiTrackDroid leverages Xposed [47]:
a popular Android framework, which allows system-level
changes at runtime without requiring installation of any cus-

# of KBytes transferred

KBytes transferred.

# of tracking-related KBytes transferred

Distribution of total Figure 13: Distribution of the
tracking related KBytes trans-
ferred.

tom ROM or modifications to the application. By using

Xposed, antiTrackDroid is able to intercept every outgoing
request and check if the destination’s domain name exist in
a blacklist of mobile trackers. In case of match (i.e. the
destination is blacklisted), the outgoing request is blocked.
Figure 14 summarizes the design of our approach.

5.2 Implementation

To assess the effectiveness and feasibility of our approach,
we implemented a prototype of antiTrackDroid for Android.
Our system consists of the following main components:

1. The Filtering module, which implements the IXposed-
HookLoadPackage and filters the tracking requests based
on the Xposed module.

2. An Android Activity (hereafter named Launcher), with
a graphical user interface to allow the users configure
the Filtering module.

3. The AppList Updater, which listens for newly added or
removed packages and updates the list of applications
being monitored, using a Broadcast Receiver.

Launcher Activity. Launcher acts as an interface between
the Filtering module and the user. It contains a menu al-
lowing the user to (i) load a different blacklist or exclude an
application from the filtering procedure. Launcher is also
responsible of maintaining two different data structures: a
HashSet with the tracking domain names loaded from the
blacklist, and a HashSet with the applications being moni-
tored. By using HashSets, antiTrackDroid is able to perform
look-ups with O(1) complexity reducing significantly the per
request latency overhead.
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Figure 14: Defense mechanism overview.

Filtering Module. Mobile applications send data over
HTTP/HTTPS requests by using TCP sockets. Therefore,
Filtering module dynamically hooks on the constructor of
the TCP socket opened by the applications residing in the
HashSet of monitored apps. In addition, it re-writes the
destination IP address with localhost in case of a blocked
request. This loop-back interface is a virtual network inter-
face that does not correspond to any actual hardware, so any
packets transmitted to it, will not generate any hardware in-
terrupts. By redirecting to loop-back, antiTrackDroid avoids
possible crashes of apps caused by aborted connections.
AppList Updater. Since users may install or remove ap-
plications at any time, our system must be able to update
the list of monitored apps. In Android, every time an app is
added or removed in the system, a broadcast message is send
through the PackageManager component, which can reach
any app in the device. By using a Broadcast Receiver [5],
the AppList updater, running as a background service, can
listen such messages and update the list of monitored apps.
Blacklist of Trackers. To determine if a request is a
tracker or not in the Filtering Module, we use the pop-
ular mobile-based blacklist of AdAway [26], which we ex-
tended by including the tracking domains we collected man-
ually during our privacy leak analysis. Our publicly released
blacklist of antiTrackDroid which we update frequently, cur-
rently contains 66k entries in total. Recall that in Launcher
Activity, the user is free to change the used blacklist by
loading one of her choice.

6. EVALUATION

In this section, we evaluate the effectiveness and perfor-
mance of our antiTrackDroid, and we explore its benefits.

6.1 Privacy performance

To evaluate the privacy preservation of antiTrackDroid,
we inspect the identifiers leaked to the network with and
without the use of antiTrackDroid. In Figure 15, we see the
number of leaked IDs with and without antiTrackDroid for
the 30 more leaking apps. Our results show that antiTrack-
Droid is able to reduce the number of leaked identifiers by
27.41% on the average. Note that since our approach blocks
the majority of third party trackers, the rest of the leaking
IDs exist due to requests destined to the developer’s first
party domains and content providers (e.g. CDNs). Blocking
such requests would cause degradation of the user experience
or even fatal error to the application.

6.2 Latency overhead

Although antiTrackDroid significantly improves privacy,
it may have an impact on the overall latency of the apps as
well. Indeed, antiTrackDroid may increase latency because
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Figure 15: Number of leaked ID without and with
antiTrackDroid for the 30 apps with the higher num-
ber of ID leaks.

it includes an extra check with the blacklist. On the other
hand, it may significantly reduce the latency imposed by
blacklisted tracker requests as these requests will be blocked
and the app will not have to suffer their latency. To mea-
sure the impact on latency, we created an Android app, with
which we can send arbitrary number of requests to a server
of ours. Thus, we create 1000 requests carrying 15KB of
data each, and we send these requests to the server sequen-
tially after a short time interval. We run this experiment 3
times: (i) once with antiTrackDroid switched off, (ii) once
with antiTrackDroid enabled and the domain not included in
the blacklist (benign request), and (iii) one more with anti-
TrackDroid enabled and the domain of the server blacklisted
(Tracker request).

Figure 16 shows that the vanilla (no antiTrackDroid) re-
quest (see 1lst bar) takes about 100 ms. When we switch
on antiTrackDroid (see 2nd bar), the latency is practically
the same. Indeed, a few lookups in a blacklist do not add
any overhead noticeable in the 100 ms range (less than 1
ms). Finally, when we switch on antiTrackDroid and make
an access to a tracker (see 3rd bar), the latency drops to less
than 10 ms as the request is blocked. We are happy to see
that antiTrackDroid, not only improves privacy, but it also
improves performance.

6.3 Benefits from the use of antiTrackDroid

Besides preserving the user’s privacy, the blocking func-
tionality of our approach improves also the performance of
apps in the user’s data-plan and battery.

Bytes transferred. By blocking the tracking related re-
quests antiTrackDroid is able to save a significant amount
of data, an aspect of great importance when it comes to mo-
bile users with specific data plan. To determine the different
volume of data transferred to/from the apps in a device run-
ning antiTrackDroid, we conduct the following experiment:
we run all apps in our device as previously, but instead of
blocking the requests we calculate the outgoing bytes of re-
quests and the incoming bytes of the associate responses. In
addition, we measure the overall traffic of the app and finally
calculate the portion of traffic marked as tracker-related.
Figure 17(a), presents the results, where we see that anti-
TrackDroid reduces the volume of transferred bytes by 8%
for the 50% of the apps.

Energy cost There are several studies [24, 37] attempting
to measure the energy cost imposed by the ad-related con-
tent to a user’s device. It is apparent that every connection
an app opens with a network entity, it imposes an overhead
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ing time with and without antiTrack-
Droid.

to the overall energy consumption of the device [39]. As a
consequence, by reducing the requests an app sends or re-
ceives, along with their transferred data, antiTrackDroid is
able to reduce the energy cost of the application as well.

Measuring the energy consumption in a mobile device is
a challenging task. In order to estimate our gain with anti-
TrackDroid, we perform a simulation, based on the energy
readings of Appscope [65]. Figure 17(b) presents the distri-
butions of the per-app power consumption for (i) the total
and (ii) the tracker-related transferred bytes. From our sim-
ulation we find that there is a significant reduction of about
7,5% for the 50% of the applications.

7. RELATED WORK

There are numerous studies aiming to explore the privacy
leaks of browsers and apps, without though attempting a
direct head-to-head comparison to help users decide what is
better for their privacy.

7.1 Privacy leak measuring studies

Roesner and Kohno in [46] propose a taxonomy to classify
tracking behaviors beyond the traditional notions of first-
and third-party tracking. There is also a significant body of
research that studied privacy leaks and user fingerprinting in
web-based online services. [41, 14, 2, 28, 6, 15], when some
of them propose also countermeasures [27, 42, 40]. However,
these works are focused solely on desktop browsers; mobile
browsers constitute a different ecosystem, where different
ad companies and analytics dominate, retrieving even more
tracking information for both user and device. In addition,
the content of the websites is also different with less available
ad-space and less capabilities in the web developers tool-
chest [16].

On the other hand, there are various notable studies re-
garding privacy leaks in mobile applications. Leontiadis et
al., for example, in [30], analyze a large dataset of 250,000
Android apps and their results reveal the ineffectiveness of
current privacy protection mechanisms. Finally, they pro-
pose a market-aware privacy protection framework aiming to
achieve an equilibrium between the developer’s revenue and
the user’s privacy. Senevirante et al. [50] conduct a large-
scale study comparing the presence of tracking libraries in
paid and free apps. Their key findings denote that almost
60% of paid apps, contain trackers that collect sensitive in-
formation, compared to 85%-95% found for free apps.
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Figure 17: Benefits from the use of antiTrackDroid.

In [66], Zang et al. conduct a survey on over a hundred
Android and iOS apps to study what kind of information
leaks to third-party domains. They dynamically analyzed
the apps by running each for 10 to 20 minutes, while per-
forming manually testing, with valid user data and perform-
ing reasonable Ul interactions. They found that, 73% of An-
droid and 43% of iOS apps shared sensitive information with
third parties. Han et al. [25], performed a real-world track-
ing study of mobile apps running on the devices of 20 partic-
ipants instrumented with dynamic taint tracking of specific
sensitive information. They found that 36% of the domains
perform user tracking and that 37% of them use persistent
identifiers that allow cross-application and cross-site profil-
ing of the user. Grace et al. in [22], studied 100,000 apps
and found that ad libraries are embedded in 52.1% of the
apps. The behavior of some of these ad-libraries were sus-
picious monitoring of the user’s call logs, phone number,
the applications installed on the phone, or even her browser
bookmarks. Book et al. [8], studied 100,000 apps over a long
period of time. They showed that the use of permissions in
ad libraries has increased over time. In [53], the authors
study the mobile ad isolation in popular Android adSDKs,
and investigate what types of information a mobile advertis-
ing entity can learn about the user of the device Demetriou
et al. [13], explored the capabilities of various ad libraries
and showed that ad networks are prone to leak more of the
user’s data than before. Therefore, they propose Pluto, a
mobile risk assesment framework to discover personal data
leaks. In [33], the authors propose a method to automati-
cally locate personal information (PI) e mbedded in network
traffic to Internet services. Unfortunately, their approach is
based on inspection of data exchanged by Internet services,
so it works only with unencrypted connections.

Similar to our work, Stevens et al. [56], analyzed 13 pop-
ular Android ad libraries. Their findings indicate privacy
violations compared to in-browser advertising. The ad li-
braries take advantage from permissions not declared in the
ad library documentation, but are needed by the apps. In
another similar study [31], the authors compare mobile apps
and web browsers based on the amount of demographic in-
formation they leak. The authors manually examined a
small group of 50 online services and monitored the PII each
of them leaks. In our paper, we extend the investigated pri-
vacy leaks to include device specific identifiers as well. Our
results show that by broadening the spectrum of leaks, web
facilitates less leaks than apps.



7.2 Proposed countermeasures

There are also several attempts aiming to solve the prob-
lem of leaking sensitive information to third-party domains
in mobile devices. In [51], for example, Shekar et al. present
an extension that splits application’s functionality code and
ad code to run in separate processes, thus eliminating the
ability of applications to request extra permissions on behalf
of their ad libraries. AdAway [48] is an ad blocker available
for Android. It comes in the form of an app which requires
root access and is based on a blacklist implemented using
the hosts file. Contrary to AdAway, our countermeasure
does not require any Read/Write access on the device’s sys-
tem partition, something that is not applicable for specific
devices. Moreover, any third-party library could easily read
the host file if it contains their domain(s) (no root permis-
sion needed), hence it could simply change the domain to
one not presented in the host file.

Recon [45], is a VPN-based system capable of identify-
ing PII leaks through the network. By combining machine
learning and network trace analysis, Recon is able to com-
pletely block or add noise to PII leaking requests. A similar
VPN-based approach is AntMonitor [52]: a crowd-sourcing
system, which leverages Android’s SDK VPNService to de-
tect sensitive data leakage on Android applications. How-
ever it detects and prevents leakage of sensitive information
only over unencrypted traffic. PrivacyGuard [54] also uses
VPNService to monitor private data leak and it is also able
to randomize the outgoing data to protect the user’s pri-
vacy. Unfortunately, it sends fake data not only to third-
party trackers, but to first-parties as well, thus risking the
application’s seamless functionality. Contrary to the above
approaches, our implementation does not need any trusted
entity (e.g. VPN or Proxy), to monitor the users traffic. Be-
sides, there are also countries, which currently ban or block
VPN-related traffic [1].

Towards a different direction, in [21] Gordon et al. im-
plemented DroidSafe: a static information flow analysis tool
that detects and reports potential leaks of sensitive infor-
mation in Android applications. The authors tested their
approach against 24 real world applications.

8. CONCLUSION

The proliferation of mobile apps give the users the option
to choose between the associated app or web browser coun-
terpart to access an online service. Each one of them has
its own advantages, but what about the user’s privacy? In
this paper, we attempt to identify which harms the least the
user’s privacy: web browsers or apps? Specifically, we con-
ducted an extensive study of a broad spectrum of privacy-
related leaks able to expose not only PII but also device spe-
cific identifiers. These identifiers allow third parties to de-
ploy fingerprinting mechanisms, that (i) track the user into
the network (ii) link web with app session and (iii) corre-
late anonymous (such as tor) sessions with eponymous ones.
Our study suggests that apps leak more information than
web browsers.

Finally, to help users improve their privacy even when
using a mobile app, we propose antiTrackDroid: an anti-
tracking mechanism for Android apps, similar to the state-
of-the-art ad-blockers of mobile browsers. Evaluation results
show that our approach is able to reduce the privacy leaks by
27.41%, when it imposes a negligible overhead of less than
1 millisecond per request.

Future Work: iOS owns a large share of the market,
therefore we plan to extend our privacy leak study to iOS,
and compare our findings in Android. This way, we will be
able to determine which of the two platforms facilitates the
most privacy leaks. Moreover, we aim to extend our defense
mechanism as well to fortify apps from third party trackers
in iOS. This can be done by leveraging Cydia Substrate [18§],
a framework which allows developers to provide run-time
patches to system’s functions.
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