
Data in brief 29 (2020) 105149
Contents lists available at ScienceDirect

Data in brief

journal homepage: www.elsevier .com/locate/dib
Data Article
ReCAN e Dataset for reverse engineering of
Controller Area Networks

Mattia Zago b, *, 1, Stefano Longari a, 2, Andrea Tricarico a, 3,
Michele Carminati a, 4, Manuel Gil P�erez b, 5,
Gregorio Martínez P�erez b, 6, Stefano Zanero a, 7

a Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
b Department of Information Engineering and Communications, University of Murcia, Murcia, Spain
a r t i c l e i n f o

Article history:
Received 23 December 2019
Accepted 9 January 2020
Available online 22 January 2020

Keywords:
Automotive
Controller area network (CAN)
Reverse engineering
Dataset
* Corresponding author.
E-mail addresses: mattia.zago@um.es (M. Zago

Tricarico), michele.carminati@polimi.it (M. Carmin
stefano.zanero@polimi.it (S. Zanero).

1 URL: https://webs.um.es/mattia.zago (Mattia Z
2 URL: https://www.deib.polimi.it/eng/people/de
3 URL: https://www.researchgate.net/profile/And
4 URL: https://www.deib.polimi.it/eng/people/de
5 URL: https://webs.um.es/mgilperez (Manuel G
6 URL: https://webs.um.es/gregorio (Gregorio M
7 URL: https://home.deib.polimi.it/zanero (Stefan

https://doi.org/10.1016/j.dib.2020.105149
2352-3409/© 2020 The Author(s). Published by E
creativecommons.org/licenses/by/4.0/).
a b s t r a c t

This article details the methodology and the approach used to
extract and decode the data obtained from the Controller Area
Network (CAN) buses in two personal vehicles and three com-
mercial trucks for a total of 36 million data frames. The dataset is
composed of two complementary parts, namely the raw data and
the decoded ones. Along with the description of the data, this
article also reports both hardware and software requirements to
first extract the data from the vehicles and secondly decode the
binary data frames to obtain the actual sensors’ data. Finally, to
enable analysis reproducibility and future researches, the code
snippets that have been described in pseudo-code will be publicly
available in a code repository. Motivated enough actors may
intercept, interact, and recognize the vehicle data with consumer-
grade technology, ultimately refuting, once-again, the security-
), stefano.longari@polimi.it (S. Longari), andrea.tricarico@mail.polimi.it (A.
ati), mgilperez@um.es (M. Gil P�erez), gregorio@um.es (G. Martínez P�erez),

ago).
tails/904890 (Stefano Longari).
rea_Tricarico (Andrea Tricarico).
tails/642676 (Michele Carminati).
il P�erez).
artínez P�erez).
o Zanero).

lsevier Inc. This is an open access article under the CC BY license (http://

mailto:mattia.zago@um.es
mailto:stefano.longari@polimi.it
mailto:andrea.tricarico@mail.polimi.it
mailto:michele.carminati@polimi.it
mailto:mgilperez@um.es
mailto:gregorio@um.es
mailto:stefano.zanero@polimi.it
https://webs.um.es/mattia.zago
https://www.deib.polimi.it/eng/people/details/904890
https://www.researchgate.net/profile/Andrea_Tricarico
https://www.deib.polimi.it/eng/people/details/642676
https://webs.um.es/mgilperez
https://webs.um.es/gregorio
https://home.deib.polimi.it/zanero
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dib.2020.105149&domain=pdf
www.sciencedirect.com/science/journal/23523409
www.elsevier.com/locate/dib
https://doi.org/10.1016/j.dib.2020.105149
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.dib.2020.105149

M. Zago et al. / Data in brief 29 (2020) 1051492
Specification Table

Subject area Engineering,
Specific area Automotive E
Type of data CSV files
How data were acquired Controller Are

connector an
Kernel, has be
been decoded
analysis is pu

Data format Raw and Filte
Parameters for data collection Cars: 500k ba

Trucks: 500k
second CAN b

Description of data collection Phase 1: Usin
(CAN) buses o
identifier in t
Phase 2: Raw
validated algo
sequence of v
window.

Data source location Dipartimento
Italy

Data accessibility Data reposito
Data identific
Direct URL to
Source code r
Networks [2]
Source code U

Value of the Data
� These data endeavor to fulfill the lack of large,
� The primary recipient for the data are the aca

might greatly benefit from these freshly gener
� The main usage of this data is twofold: i) the ra

decoded data can be used to power self-optim
� The Controller Area Network (CAN) streams a

entific community with additional and improv
through-obscurity paradigm used by the automotive manufacturer
as a primary defensive countermeasure.
© 2020 The Author(s). Published by Elsevier Inc. This is an open
access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
Computer Science
ngineering, Artificial Intelligence

a Network (CAN) buses have been accessed using a standard CAN
d a CANtact board. The CAN Utils library, publicly available in the Linux
en used to intercept the network traffic of the vehicle. Sensors data have
using the state-of-the-art algorithm. The source code for each step of the
blicly available in the repository, as specified below.
red
ud rate, connected o the OBD-II port of each vehicle.
baud rate, connected both to the OBD-II port and to a second wire into a
us.
g consumer-grade hardware, we accessed the Controller Area Network
f five vehicles. CSV files contain the binary sequence for each CANline and
he experiment time window.
data have been decoded and interpreted with well-known and previously
rithms to identify the sensors' variables. Decoded CSV files contain the
alues for each variable, identifier, and CANline in the experiment time

di Elettronica, Informazione e Bioingengeria, Politecnico di Milano, Milan,

ry: ReCAN Data - Reverse engineering of Controller Area Networks [1]
ation number: 10.17632/76knkx3fzv
data: https://data.mendeley.com/datasets/76knkx3fzv
epository: ReCAN Source - Reverse engineering of Controller Area

RL: https://github.com/Cyberdefence-Lab-Murcia/ReCAN

continuous, and machine-learning-ready datasets for automotive analysis.
demic scientists that focus on machine-learning-driven researches. They
ated and carefully reviewed data.
w data can be used to train unsupervised automatic decoders while ii) the
ized intrusion detection systems.
re also decoded and interpreted, such preprocess might provide the sci-
ed data characterization.
1. Data description

This dataset aims to provide two types of data to the scientific community, namely, i) a curated
dataset of automotive raw data frames collected frommultiple vehicles (raw.csv files in Fig.1), and, ii)
the same data interpreted and decoded (unified.csv files in Fig. 1). Both aspects are necessary to
provide a common ground for any Machine Learning (ML) analyzer. The data will be available on

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://data.mendeley.com/datasets/76knkx3fzv
https://github.com/Cyberdefence-Lab-Murcia/ReCAN

Fig. 1. Data repository structure and data samples. (b) Sample of RAW data, obtained as described in Section 2.3 and indicated in
Fig. 1a as raw.csv. Note that the data column is truncated due to space concerns. (c) Sample of decoded data, obtained as described
in Section 2.4 and indicated in Fig. 1a as unified.csv

M. Zago et al. / Data in brief 29 (2020) 105149 3
Mendeley Data [1]. Moreover, the source code used to extract, decode, and analyze the data is available
in a public repository [2]. Figs. 1a and 2 respectively present the structure and contents of the data
repository [1] and the code repository [2] and will be described in details in Section 1.1 and Section 1.2
respectively.
1.1. Data repository

The data repository is composed of a folder for each experiment, as will be described in Section 2
and summarised in Table 2. For each vehicle, both the raw and the decoded data are stored as CSV
files. Fig. 1a presents its structure.

The first set of data, namely the raw dataset, consists of a list of data frames’ data field augmented
with the timestamp (POSIX time), the CAN line identifier, and the Engine Control Unit (ECU) identifier
(hexadecimal value). An excerpt of data is available in Fig. 1b (the binary sequences are truncated to
improve their readability).

The second set of data, namely the unified dataset, consists of the list of all variables with their
values for each CANline and ECU identifier. In this case, instead of having the timestamps as POSIX
time, the values are expressed in a human-readable format (yyyy-MM-dd HH:mm:ss.S). Fig. 1c pro-
vides an excerpt of these unified data.

Since the analysis is heuristic-based and limited to a specific time window, it is possible that some
ECU identifiers exist in the raw data, but not in the decoded version. This situation happens whenever

Fig. 2. Code repository [2].

Table 1
Dataset composition according to vehicle type.

ID Vehicle Type Connector FMS

C-1 Alfa Romeo Giulia Veloce Car OBD-II No
C-2 Opel Corsa Car OBD-II No
T-1 Mitsubishi Fuso Canter Commercial Truck OBD-II Yes
T-2 ISUZU M55 Commercial Truck OBD-II, direct wire access No
T-3 Piaggio Porter Maxi Commercial Truck OBD-II No

M. Zago et al. / Data in brief 29 (2020) 1051494
there is a combination of CANline and ECU identifiers that present constant values across all recorded
data frames. For example, by looking at the Opel Corsa data, it appears that the identifiers 0D1, 0F1,
139, 148, 17D, 182 (among others) are providing data frames that have constant values, thus they have
been ignored by the heuristic described in Section 2.

Table 1 presents the vehicles included in the dataset, reporting the vehicle identifier, the type, the
connector used and whether there was the Fleet Management Systems Interface (FMS) available.
Similarly, Table 2 reports for each vehicle the experiments that were performed with their time
windows and description. The table is also providing a summary regarding the number of ECU iden-
tifiers and data frames.

Table 2
List of experiments per vehicle.

Vehicle Test Experiment time IDs Frames Description

Date Start End

C-1 #1 2018-07-26 15:15:58 15:35:20 77 3,062,691 city and highway driving
C-1 #2 2018-07-26 15:46:13 15:48:32 76 364,863 city and highway driving
C-1 #3 2018-07-26 15:49:10 15:49:23 76 33,005 repeated brake tests
C-1 #4 2018-07-26 15:50:29 16:10:54 83 3,227,315 city and highway driving
C-1 #5 2018-07-26 16:10:57 16:20:16 83 1,473,625 city and highway driving
C-1 #6 2018-07-26 16:20:20 16:30:59 83 1,684,769 city and highway driving
C-1 #7 2018-07-26 16:53:17 17:10:31 83 2,723,484 city and highway driving
C-1 #8 2019-02-01 16:31:01 16:40:58 82 1,569,776 city and highway driving
C-1 #9 2019-02-01 15:18:55 16:30:36 88 10,942,747 city and highway driving
C-2 #1 2019-10-02 08:54:16 09:22:40 78 3,467,855 city and highway driving
T-1 #1 2019-02-20 16:04:06 16:35:04 31, 47a 1,798,602a city and highway driving
T-2 #1 2019-11-08 14:51:57 15:07:43 22 498,721 city driving
T-2 #2 2019-11-08 14:34:33 14:43:20 22 263,269 vehicle not moving
T-3 #1 2019-11-08 11:48:56 12:14:58 23 1,729,623 city driving
T-3 #2 2019-11-08 11:16:55 11:23:42 19 2,795,321 vehicle not moving test 1
T-3 #3 2019-11-08 12:57:48 13:42:52 23 2,795,321 vehicle not moving test 2

a For this experiment, there are included both can0 and can1 lines.

M. Zago et al. / Data in brief 29 (2020) 105149 5
1.2. Code repository

The code repository is composed of threemain parts, as depicted in Fig. 2. Firstly, a compressed copy
of the data is available in the data folder, effectively mirroring the contents of the data repository [1].
Secondly, in the repository root, there is the Jupyter Notebook (python scripts) used to extract, decode,
and analyze the data. Lastly, the graphics folder contains for each vehicle all the pictures generated by
the analysis that have been used by the human expert to provide feedback on the process. In Section 2,
we show examples of such charts and figures to support the dataset description.

Finally, Figures from 3 to 9 and Table 3 have been used as support to justify themethodology and the
experiments assumptions.
2. Experimental design, materials, and methods

The vehicle data can be accessed through a connection with the physical CAN network, which
nowadays is mainly provided by a standard SAE J1962 [3] On-Board Diagnostics (OBD) connector [4].
CAN communication is based on four different kinds of frames, Namely:

� Data frames carry data from a transmitting ECU. For example, a frame containing the steering
wheel angle.

� Remote frames are used to request the transmission of a data frame, using the ID to signal which
frame is needed. For example, A is the unit responsible for transmitting messages with ID 0x01,
another unit B can send a remote frame with ID 0x01 to request A to send a data frame. Usually,
these frames are not used, as data frames are typically sent at specific time intervals.

� Error frames are transmitted when bus errors occur, e.g., when badly formed frames are
transmitted.

� Overload frames signal a delay of the next data frame because the transmitting ECU is overloaded
at the moment.

In the logs, the visible CAN traffic is composed by data and remote frames (which are not often used
in standard CAN communication). In our case, remote frames were rarely detected and have been

Table 3
Main identifiers for each vehicle.

y Obtained by FMS.
* Manually identified.
** These variables appear to be replicated multiple times in the data frame.

M. Zago et al. / Data in brief 29 (2020) 1051496
dropped in the final version of the data. Error and overload frames serve only as control infrastructure
and are not usually relayed from the CAN controller to higher-layer applications such as the CAN-to-
USB interface drivers. Since they do not carry information, they have been excluded from this analysis.

Data frames have a standard and well-defined packet structure, as indicated by the ISO 15765-2
standard [5]. Fig. 3 presents a schematic view of the frame bytes where it is possible to notice both the
ID and the data fields. The internal structure and encoding of the data fields are proprietary, and a
decoding manual is generally not available to the public. Nevertheless, in the case of commercial ve-
hicles, like some of the trucks identified in the following paragraphs, the FMS cheat sheet has been
made available by a third party company that provides these services (as specified in the SAE J1939
standard [6]).

2.1. Experiments and data fields

The experimental evaluation has been conducted on five different vehicles, and more than 38
million frames have been collected to provide coverage and generality. Table 1 reports the complete list
of vehicles with their type and the connector used to access the CAN lines. As shown in Table 1, there
Fig. 3. CAN data frame.

Fig. 4. Architecture of the collection framework including both the vehicle and the direct human intervention.

M. Zago et al. / Data in brief 29 (2020) 105149 7
are both consumer cars and commercial trucks. Table 2 reports the list of the experiments with their
time windows and the number of data frames collected.

Although there are no specific differences between the two categories (they both operatewithin the
(OBD)-II standard, [3], Chapter 2.2 Related Publications]), they do differ in terms of driveability and
general drivers’ behavior. Nevertheless, our analysis shows that standard sensors, such as speed and
Revolutions per minute (RPM), have analog series properties.

Unfortunately, the conditions, the timing and the configuration of each vehicle differs from the
others. However, as presented in Table 3 it was possible to identify somemost important signals sent by
the vehicles, i.e., speed, RPM and wheels position.

Experiment EX-1-Bwith the vehicle Alfa Giulia (C-1) consists in a series of sudden and abrupt hard
braking with the purpose of activating the safety devices on the vehicle (such as the anti-lock braking
system (ABS) and the traction control system (TCS)).
2.2. Framework architecture

In Fig. 4 the architecture of the framework is illustrated. The process starts with a vehicle's test
drive, as described in Table 2. As described in detail in Section 2.3, the Data Collection module
consists in both hardware and software elements that act as a probe for extracting CAN frames. This
data is stored and published as raw data (see raw.csv in Fig. 1a).

The raw data is then preprocessed in order to calculate statistical features to help decode the frames
by the Data Extractionmodule, as described in Section 2.4. The human expert can provide insights
and feedback regarding the decoding process, for example, by identifying errors or introducing more
sophisticated heuristic to distinguish individual cases.
2.3. Data collection

The process of data collection consists of connecting a laptop to the CAN network(s) in order to
intercept the traffic during the experiments. In the following paragraphs, both the hardware and
software requirements will be listed. As mentioned above, the scope of the collection phase is to obtain
the content of the data frames, obtaining a raw data file for each vehicle.

2.3.1. Hardware requirements
CANs are generally accessible through the OBD-II connector (either type A or type B depending on

the manufacturer of the vehicle). However, as also presented in Table 1, some CAN lines may not be
directly accessible from the connector. Thus a physical toolkit to connect to the wires is required. To be
precise, not all OBD-II connectors available for the consumers market provide raw access to the CAN

M. Zago et al. / Data in brief 29 (2020) 1051498
lines. The totality of wireless devices and most of the wired devices that offer a OBD-II connector are
ELM327 microcontrollers that request diagnostic messages and translate the vehicle response, not
providing any CAN-to-USB interface.

An open-source hardware device specifically made to access the CAN-to-USB interface is repre-
sented by the CANtact device [7].

2.3.2. Software requirements
In terms of software requirements, the Linux kernel already provides the libraries CAN Utils [8],

which suffice to interact with the devices and the vehicle's CAN network. To be more precise, in order
to retrieve the CAN traffic, it is necessary to bring up the network interface that provides connectivity.
This can be done through the command slcand [options] <tty> [CAN interface], with some
tweaks regarding the CAN bitrate option values. Having a successful connection with the vehicle, the
CAN traffic can be retrievedwith the command candump [options]<CAN interface>. We used the
option -t a to force the POSIX timestamp of the data to be absolute.

For example, the output of the candump command looks like:
(1573208215.472159) can0 300 [8] 64 00 00 00 00 00 00 00.
However, the raw CSV files have a slightly different format. The conversion is done y converting each

byte of the frame's data to binary and padding it with zeros to reach exactly 8 bits length.
2.4. Data extraction

Despite the lack of signal-semantic knowledge, as reported in Section 2.3, the data have been
analyzed to extrapolate characteristics that eventually led to a decoded interpretation of the sensors
data. As will be described in this section, by analyzing the data throughmultiple prisms, it was possible
to pinpoint common structures and, in general, the behavior of the data content. That is to say, the data
field (see Fig. 3) has often a substructure of its own, often following a proprietary format. For example, a
single data frame may contain both the vehicle speed and the engine revolutions per minute as 32-bit
integers.

As suggested by Markovitz [9] and Marchetti [10], among others, it is possible to guess the internal
structure of the data field by looking at the variability of the bits. Specifically, a sequence of one ormore
bits always at zero may indicate a field separator.

Leveraging the knowledge of the identifiers, each vehicle trace is separated in sub-traces, one for
each ID and CANline, i.e., each subtrace includes all (and only) the frames for a specific pair ID-
CANline, in the same order as they arrived. For each sub-trace, the first operation that serves as
the backbone for the analysis is the extraction of the bitflip value for each bit in the sequence.
Following [10], we define the bitflip function as the ratio between the number of bit's value changes
and the number of received packages so far. That is to say, let us consider the ith bit of the nth packet,
then the bitflip is defined as the number of flips of ith bit divided by n. Within the scope of this
research, the bitflips are calculated only over the whole sequence of data frames. As described in Alg.
1, the algorithm provides both the sequence of bitflips for any given (sorted) list of data frames and
their proportional value. As an example, the values range from 0 for constant bits (i.e., there are no
changes) to 1 for those bits that constantly changes the value (i.e., each bit is different from the one in
the previous data frame). Moreover, following [10] we define for any bitflip b the magnitude magðbÞ
as described in Equation (1):

magðbÞ¼
� �∞ b � 0
blog10ðbÞc otherwise

(1)

Note that we do use the floor function instead of the ceiling one proposed in [10]. This operation do
not change the intended usage in the original algorithm, while permitting to easily separate those
bitflips that constantly changes (e.g., b½i� ¼ 1 implies that for each frame the i-th bit is different from the
previous one). However, it is still unclear whether a more accurate function to replace the magnitude
may provide a better base for the variable-splitting heuristic.

M. Zago et al. / Data in brief 29 (2020) 105149 9

M. Zago et al. / Data in brief 29 (2020) 10514910
Fig. 5 reports a few sample heatmap for the bitflips of the vehicle Opel Corsa (See Table 2). In the
figure, each row represents, in percentage, the number of bitflips for each one of the bits of the
sequence (up to 64, depending on the identifier). For each identifier, the darker the cell, the higher the
number of bitflips with respect to the number of frames received for that specific ID and CANline, i.e.,
indicated in Alg. 1 with the returned variable bfp. Empty cells indicate that the data frames received are
smaller than 64 bits (See Fig. 3). For each experiment (as reported in Table 2), a graphical represen-
tation of their bitflips (like the sample presented in Fig. 5) is available in the repository.

Having calculated the bitflips and their magnitudes for each packet, Alg. 2 extracts the data blocks
(i.e., potential variables) from the binary sequence (s) and their corresponding bitflips (b). Each data
block obtained from the heuristic described in Alg. 2 may represent a variable.
Fig. 5. Sample bitflips heatmaps for vehicle Opel Corsa (See Table 2) with different level of information.

M. Zago et al. / Data in brief 29 (2020) 105149 11
Nevertheless, as reported by [4,9,10], among others, car manufacturers tend to implement naïve
protection strategies in the form of CRCs and counters. For example, a counter may be used to order the
correct sequence of frames, while a CRC may be used to detect random transmission errors.

Finally, the third phase of the process consists of taking the calculated data blocks and attempt to
decode them according to their type. In the specific case of both CRCs and counters, their respective
data blocks are ignored. At this stage, each block falls in one of the following categories. Let s and e be
the start index and the end index of the block, respectively; S be the binary sequence, B the corre-
sponding bitflips vector and M their magnitudes.

M. Zago et al. / Data in brief 29 (2020) 10514912
� If s ¼ e the block is considered as binary.
� If there is a region ða; bÞ0s � a< b � e in S such that ci02,B½i�zB½i þ 1�, the region ða; bÞ is
considered a counter. The remaining parts, if any, are re-analyzed as separated blocks.

� If the average bitflip value is between 0.5 and ± its standard deviation, the block is considered a crc.
� If the length of the block is between 1 and 4 (1< e� s � 4) the block is considered a nibble.
� If the length of the block is between 4 and 8 (4< e� s � 8) the block is considered a byte.
� If the length of the block is between 8 and 16 (8< e� s � 16) the block is considered a halfword.
� Otherwise the block is considered a word.

The division between nibble, byte, halfword, and word is instrumental to the analysis. To
improve the comparability of the variables, they have been grouped according to their size (i.e., their
values ranges).

2.5. Data characterization

This section focuses on providing sample insights on the proposed datasets. Each figure, table, or
measure proposed in this section is available in the source code repository.

The code repository, for each vehicle, contains both the source code and the generated statistics to
verify these metrics. For example, Fig. 6 presents the distribution of the number of data frames per ECU
ID, captured for each vehicle, experiment, and, where available, CANline. To be more precise, the
vertical axes represent the number of data frames captured, while on the horizontal axis, the ECU
identifiers that have been stripped of their names and sorted. In the figure, it is possible to notice that,
independently from the vehicle, only a handful of IDs produces most of the data frames found in the
network traffic. Fig. 7 presents these distributions as boxplots (on a logarithmic scale for visualization
purposes).

The differences between the number of frames per ID can be explained by looking at the interarrival
frames times per (ECU) identifier. Fig. 8 presents an example of such analysis for each ID of the Alfa
Romeo Giulia (C-1, Exp-3).

2.6. Limitations

There are plain and noticeable limitations to the methods and algorithms used to decode the data.
The following paragraphs will address the main one to provide clarifications.

First and foremost, OBD-II both refer to the physical connector (as specified by the SAE standard
J1962 [3], formally the J1962 diagnostic connector) but also to the whole standard, also including the
electric specifications and the communication protocol. In the context of this research, the data do not
use the OBD-II protocol to request sensors data. However, the OBD-II connector has been used as a way
to obtain direct access to the internal CAN networks.

2.6.1. Hardware limitations
To the best of our knowledge, not all the vehicles offer public and unrestricted access to all the

internal CAN networks through the OBD-II diagnostic connector, that is to say, apart from the afore-
mentioned OBD-II querying protocol, the manufacturer is not required to provide direct access to the
internal networks. For example, as cited before in Table 1, in at least one scenario was necessary to have
direct physical access to the CAN network wires to be able to intercept the traffic.

2.6.2. Sofware limitations
To the best of our knowledge, there are libraries and projects that offer the services of connecting,

reading, and decoding vehicle data [11]. However, these libraries are based on the OBD-II querying

Fig. 6. Number of data frames intercepted for each vehicle, CANline and experiment (Table 2), the series have been sorted and
includes only those IDs for which there is at least one data variable obtained from the data extraction algorithm, as specified in
Section 2.4.

M. Zago et al. / Data in brief 29 (2020) 105149 13
protocol, which provides decoded data within a user-friendly interface. In contrast, the approach
inheres proposed aims to bypass this protocol by providing data frames traces collected directly from
the CAN networks through the OBD-II port. To be precise, the OBD-II only provides a subset of the
information, while the CAN provides access to all the communications in the vehicle. However, older
vehicles might not have access to the CAN network through this connector. Thus it will be required to
identify, peel, and connect directly to the network in order to use it.

Since the exact match between the data encoding and the names and values of the sensors is usually
proprietary, this research relies on the FMS datasheet, where and when available. Generally speaking,
the FMSs are considered intellectual property and usually have a highmarket value. For example, in the
case of the Mitsubishi commercial truck (T-1), where the FMS has been made available by the owning
company, it was possible to validate the output obtained from the heuristic algorithm of Section 2.4
with the information provided in the FMS. In this case, it appears to be clear that there are notice-
able differences regarding the identified and decoded variables and the actual sensors data

Fig. 7. Statistical information regarding the number of ECU identifiers for each vehicle and experiment. The bottom axis presents the
unique count of ECU identifiers, while the top axis reports the boxplots that describe the distributions of data frames for each
vehicle, experiment and ECU identifier. Note that for vehicle T-1 there are two CAN lines.

Fig. 8. Interarrival frames times for vehicle Alfa Romeo Giulia (C-1). Values are in logarithmic scale.

M. Zago et al. / Data in brief 29 (2020) 10514914
specifications. Consider both Table 3 and Fig. 9 as base for this validation process. FMS specifications
indicate that the speed, registered as a decimal number, is encoded with the ECU identifier 18FEF100
using bits 16e23 for the integer part and 8e15 for the decimal part. Despite having correctly located
these two regions (see Fig. 9), the decode heuristic also identified 5 more variables, which might be
used as support variables by the ECU. Correspondingly, the (RPM) data are encoded in the 32e39
Fig. 9. Bitflips magnitude heatmap for vehicle T-1, limited to the ECU identifier that carries the information regarding the (RPM)
and speed sensors.

M. Zago et al. / Data in brief 29 (2020) 105149 15
(integer part) and 24e31 (decimal part) regions of 0CF00400 ECU identifier, while the algorithm also
identified multiple locations that can be considered as variables.

To the best of our knowledge, unless indicated by the FMS datasheet, there are no heuristics that
recognizes two components of the same variable, such as the integer and the fractional parts.

Acknowledgments

This study was funded by a predoctoral grant from the Spanish National Cybersecurity Institute
(INCIBE) within the program “Ayudas para la Excelencia de los Equipos de Investigaci�on Avanzada en
Ciberseguridad” (“Grants for the Excellence of Advanced Cybersecurity Research Teams”), with code
INCIBEI-2015-27353; “Ayudas para estancias en el estranjero de alumnos de doctorado en las líneas de
actuaci�on de Campus Mare Nostrum” (“Grants for stays abroad of Ph.D. students within the lines of
action of Campus Mare Nostrum”); European Union's Marie Skłodowska-Curie grant agreement No
690972; European Union's Horizon 2020, under grant agreement No. 700326 (RAMSES project).

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relation-
ships that could have appeared to influence the work reported in this paper.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.dib.2020.105149.

References

[1] M. Zago, S. Longari, A. Tricarico, M. Carminati, M. Gil P�erez, G. Martínez P�erez, S. Zanero, ReCAN Data - Reverse Engineering
of Controller Area Networks, Mendeley Data [dataset], 2020, https://doi.org/10.17632/76knkx3fzv.

[2] M. Zago, S. Longari, A. Tricarico, M. Carminati, M. Gil P�erez, G. Martínez P�erez, S. Zanero, ReCAN Source - Reverse Engi-
neering of Controller Area Networks, 2019, https://doi.org/10.5281/zenodo.3625715. URL: https://github.com/
Cyberdefence-Lab-Murcia/ReCAN.

[3] SAE International Surface Vehicle Recommended Practice, SAE J1962: Diagnostic Connector, Jul. 2016, https://doi.org/10.
4271/J1962_201607.

[4] V.H. Le, J. den Hartog, N. Zannone, Security and privacy for innovative automotive applications: a survey, Comput.
Commun. 132 (October) (2018) 17e41, https://doi.org/10.1016/j.comcom.2018.09.010.

[5] International Organization for Standardization, Geneva, CH, ISO 15765-2: Road Vehicles e Diagnostic Communication over
Controller Area Network (DoCAN) e Part 2: Transport Protocol and Network Layer Services, Apr. 2016.

[6] SAE International Surface Vehicle Recommended Practice, SAE J1939: Serial Control and Communications Heavy Duty
Vehicle Network - Top Level Document, Aug. 2018, https://doi.org/10.4271/J1939_201808.

[7] E. Evenchick, CANtact, Jan 2017. https://linklayer.github.io/cantact/.
[8] Linux Kernel, Can Utils. https://github.com/linux-can/can-utils, Feb 2018.
[9] M. Markovitz, A. Wool, Field classification, modeling and anomaly detection in unknown CAN bus networks, Vehicular

Communications 9 (2017) 43e52, https://doi.org/10.1016/j.vehcom.2017.02.005.
[10] M. Marchetti, D. Stabili, READ: reverse engineering of automotive data frames, IEEE Trans. Inf. Forensics Secur. 14 (4)

(2019) 1083e1097, https://doi.org/10.1109/TIFS.2018.2870826.
[11] J.M. Smith, Awesome Vehicle Security. https://github.com/jaredthecoder/awesome-vehicle-security, 2016.

https://doi.org/10.1016/j.dib.2020.105149
https://doi.org/10.17632/76knkx3fzv
https://doi.org/10.5281/zenodo.3625715
https://github.com/Cyberdefence-Lab-Murcia/ReCAN
https://github.com/Cyberdefence-Lab-Murcia/ReCAN
https://doi.org/10.4271/J1962_201607
https://doi.org/10.4271/J1962_201607
https://doi.org/10.1016/j.comcom.2018.09.010
http://refhub.elsevier.com/S2352-3409(20)30043-3/sref5
http://refhub.elsevier.com/S2352-3409(20)30043-3/sref5
http://refhub.elsevier.com/S2352-3409(20)30043-3/sref5
http://refhub.elsevier.com/S2352-3409(20)30043-3/sref5
https://doi.org/10.4271/J1939_201808
https://linklayer.github.io/cantact/
https://github.com/linux-can/can-utils
https://doi.org/10.1016/j.vehcom.2017.02.005
https://doi.org/10.1109/TIFS.2018.2870826
https://github.com/jaredthecoder/awesome-vehicle-security

	ReCAN – Dataset for reverse engineering of Controller Area Networks
	1. Data description
	1.1. Data repository
	1.2. Code repository

	2. Experimental design, materials, and methods
	2.1. Experiments and data fields
	2.2. Framework architecture
	2.3. Data collection
	2.3.1. Hardware requirements
	2.3.2. Software requirements

	2.4. Data extraction
	2.5. Data characterization
	2.6. Limitations
	2.6.1. Hardware limitations
	2.6.2. Sofware limitations

	Acknowledgments
	Conflict of Interest
	Appendix A. Supplementary data
	References

